

KMC Bioinformatics Workshop

Alpha diversity

Kiel, September 25, 2024 – Ana Schaan

Alpha diversity in Microbiome Analysis

- Part 1: Understanding the concepts
 - → Why Alpha diversity matters
 - → How we measure it (diversity indexes)
 - → Rarefaction
- Part 2: Hands-on Practice
 - → Quick intro to R and to the JupyterHub
 - → Calculating and visualizing Alpha diversity with real GMbC data

Alpha diversity: Within sample diversity

Definition

- → Local-scale diversity
- → Describes species richness (number of species) and evenness (how evenly they are distributed) within an ecological unit, e.g. the human gut, a pond.

Importance

- → Understanding ecosystem functionality and resilience
- → Captures how diverse a microbial population is within a given environment

Exploring microbial communities across different environments

Sample 1

Sample 2

Sample 3

Species richness

Measure of the number of different species present in a community.

The simplest wat to describe biodiversity: <u>focuses on counts</u>.

Species richness

Measure of the number of different species present in a community.

The simplest wat to describe biodiversity: focuses on counts

Evenness

Measures how similar the abundances of different species are.

High evenness: species are similarly distributed.

Low evenness: One of a few species dominate the community.

Evenness

Measures how similar the abundances of different species are

High evenness: species are similarly distributed.

Low evenness: One of a few species dominate the community.

Evenness

Measures how similar the abundances of different species are

High evenness: species are similarly distributed.

Low evenness: One of a few species dominate the community.

Singletons and doubletons

Singletons: A species that is represented only once in a community or sample. Provide insight into potential undetected species!

Doubleton: A species that is represented exactly two times in a community or sample. Also informs about <u>rarity</u> of species in a community.

Richness estimators such as **Chao1** take this into consideration.

Singletons and doubletons

Singletons: A species that is represented only once in a community or sample. Provide insight into <u>potential undetected species!</u>

Doubleton: A species that is represented exactly two times in a community or sample. Also informs about <u>rarity</u> of species in a community.

Richness estimators such as **Chao1** take this into consideration

Singletons and doubletons

Singletons: A species that is represented only once in a community or sample. Provide insight into potential undetected species!

Doubleton: A species that is represented exactly two times in a community or sample. Also informs about <u>rarity</u> of species in a community.

Richness estimators such as Chao1 take this into

Observed Number of Species

Total count of distinct species in sample.

S = Number of unique species observed

Shannon Diversity Index

Measures richness and evenness.

$$H' = -\sum (p_i * ln(p_i))$$

 p_i is the proportion of species i

Simpson's Diversity Index

Measures the probability that two randomly selected individuals belong to the same species.

$$D = 1 - \sum pi^2$$

 p_i is the proportion of species i

Chao1 Richness Estimator

Estimator of richness that accounts for rare species, including those that are absent from the sample.

$$S = S_{obs} + (f_1^2) / (2 * f_2)$$

S_{_obs} is the species count, f₁ is the number of singletons, f₂ is the number of doubletons

Observed Number of Species

Total count of distinct species in sample.

S = Number of unique species observed

Shannon Diversity Index

Measures richness and evenness.

$$H' = -\sum (pi * ln(pi))$$

 p_i is the proportion of species i

Simpson's Diversity Index

Measures the probability that two randomly selected individuals belong to the same species.

$$D = 1 - \sum pi^2$$

 p_i is the proportion of species i

Chao1 Richness Estimator

Estimator of richness that accounts for rare species, including those that are absent from the sample.

$$S = S_{obs} + (f_1^2) / (2 * f_2)$$

 S_{obs} is the species count, is the number of singletons, is the number of doubletons

Observed Number of Species

Total count of distinct species in sample.

S = Number of unique species observed

Shannon Diversity Index

Measures richness and evenness.

$$H' = -\sum (p_i * ln(p_i))$$

 p_i is the proportion of species i

Simpson's Diversity Index

Measures the probability that two randomly selected individuals belong to the same species.

$$D = 1 - \sum pi^2$$

 p_i is the proportion of species i

Chao1 Richness Estimator

Estimator of richness that accounts for rare species, including those that are absent from the sample.

$$S = S_{obs} + (f_1^2) / (2 * f_2)$$

 S_{obs} is the species count, f_1 is the number of singletons, f_2 is the number of doubletons

Observed Number of Species

Total count of distinct species in sample.

S = Number of unique species observed

Shannon Diversity Index

Measures richness and evenness.

$$H' = -\sum (p_i * ln(p_i))$$

 p_i is the proportion of species i

Simpson's Diversity Index

Measures the probability that two randomly selected individuals belong to the same species.

$$D = 1 - \sum pi^2$$

 p_i is the proportion of species i

Chao1 Richness Estimator

Estimator of richness that accounts for rare species, including those that are absent from the sample.

$$S = S_obs + (f_1^2) / (2 * f_2)$$

 S_{-obs} is the species count, f_1 is the number of singletons, f_2 is the number of doubletons

The Shannon Diversity Index (H')

Definition:

A measure that accounts for both species richness and evenness of species in a community. It quantifies the uncertainty in predicting the species of a randomly chosen individual.

$$H' = -\sum (pi * ln(pi))$$

 p_i is the proportion of species i

Simpson's diversity index

Definition:

Measures the probability that two individuals randomly selected will belong to the same species.

Emphasizes <u>dominance</u> (more weight to common species).

$$D = 1 - \sum pi^2$$

 p_i is the proportion of species i

Chao1 Richness Estimator

Definition:

Estimate of species richness, accounting for rare species.

Considers singletons and doubletons to estimate the total number of species, including those that may not have been observed.

$$S = S_obs + (f_1^2) / (2 * f_2)$$

 S_{obs} is the species count, f_1 is the number of singletons, f_2 is the number of doubletons

Other alpha diversity metrics

Pielou's Evenness (J')

Evenness in species distribution

$$J' = \frac{H'}{\ln(S)}$$

Faith's Phylogenetic Diversity (PD)

Measures branch length of a phylogenetic tree. Incorporates evolutionary relationships!

$$PD = \Sigma(branch\ lengths)$$

ACE (Abundance-based Coverage Estimator)

Estimates richness by accounting for rare species

$$(\frac{f_{rare}}{C_ACE})S_ACE$$
= $S_abund + S_rare +$

Challenges in Alpha Diversity Estimation

- Technical and biological factors can influence the calculation of alpha diversity measurements.
- Common challenges:
 - → Differences in sequencing depth
 - → Data sparcity

Impact of Sequencing Depth on Alpha diversity

- Sequencing depth: Total number of reads obtained from a sample.
- Higher sequencing depth leads to a better detection of rare species
- Major issue:
 - → Inconsistent sequencing depths across samples can lead to inaccurate or incomparable alpha diversity measurements

Using rarefaction to balance sequencing depth and diversity

Rarefaction:

- → A technique used to standardize the number of reads across samples
- → Random subsampling of each sample to the same sequencing depth
- → Prevents that diversity estimates are not inflated by samples with higher depths

Sequencing Depth (Number of Reads)

Using rarefaction to balance sequencing depth and diversity

Rarefaction:

- → A technique used to standardize the number of reads across samples
- → Random subsampling of each sample to the same sequencing depth
- → Prevents that diversity estimates are not inflated by samples with higher depths

Sequencing Depth (Number of Reads)

